

Figure 4.33 The graph of f^\prime , a discontinuous derivative.

-3

Assume f(x) is continuous even when f'(x) is undefined

- @ Justify your answer to 1 above
- (3) At what values of x does f(x) have a minimum?
- 4) For what intervals is f(x) concave down?
- (5) Justify your answer to (4) above

© Sketch a possible graph of f(x). f(x) must be continuous with domain [-4, 4] and f(-4) = 1 and f(4) = -2

Figure 4.25 The graph of f', the derivative of f, on the interval [-4, 4].

Answer each question and Justify your answers.

- 1 on what intervals is f increasing?
- @ on what intervals is f concave up?
- 3) At which X-coordinates does f have a local min?
- 4) At which x-coordinates does of have a Local max?

Dwhat are the x-coordinates of all inflection points of f?

© Sketch a possible graph of a continuous function of on the interval [-4, 4].

4 corners

The graph of f' is below. At which x-value(s) does f have a relative minimum? Explain your reasoning.

The function f is a twice-differentiable function with selected values of f, f' and f'' given in the table below.

Х	-3	2	4	5	9
f(x)	3	7	4	2	5
f'(x)	2	0	-1	0	-4
f"(x)	-1	3	2	-1	6

At which x-value(s) does f have a relative maximum? Explain your reasoning.

The function f is a differentiable function with $f'(x) = 3(x-2)^2(x+1)(x+4)$

At which x-value(s) does f(x) have a relative maximum? Explain your reasoning.

The functions f, g and h are differentiable functions with h(x) = f(g(x)). The function f is a strictly positive and decreasing function. The graph of g'(x) is given below.

At x = 2, does h(x) have a relative minimum, maximum or neither. Explain your reasoning.